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High-frequency cavity optomechanics using bulk
acoustic phonons
Prashanta Kharel1*, Glen I. Harris2, Eric A. Kittlaus1, William H. Renninger1, Nils T. Otterstrom1,
Jack G. E. Harris2, Peter T. Rakich1*

To date, microscale and nanoscale optomechanical systems have enabled many proof-of-principle quantum
operations through access to high-frequency (gigahertz) phonon modes that are readily cooled to their thermal
ground state. However, minuscule amounts of absorbed light produce excessive heating that can jeopardize
robust ground-state operation within these microstructures. In contrast, we demonstrate an alternative strategy
for accessing high-frequency (13 GHz) phonons within macroscopic systems (centimeter scale) using phase-
matched Brillouin interactions between two distinct optical cavity modes. Counterintuitively, we show that these
macroscopic systems, with motional masses that are 1million to 100million times larger than those of microscale
counterparts, offer a complementary path toward robust ground-state operation. We perform both optomechan-
ically induced amplification/transparency measurements and demonstrate parametric instability of bulk phonon
modes. This is an important step toward using these beam splitter and two-mode squeezing interactions within
bulk acoustic systems for applications ranging from quantummemories and microwave-to-optical conversion to
high-power laser oscillators.

INTRODUCTION
The coherent control of mechanical objects (1–4) can enable applica-
tions ranging from sensitive metrology (5) to quantum information
processing (6, 7). An array of devices (8–14) ranging from nano-
optomechanical crystals to suspended micromirrors have been used
to manipulate mechanical degrees of freedom using light. Central to
the field of cavity optomechanics—and more generally to quantum
information science—is the ability to harness long-lived mechanical
excitations at high frequencies (15). Long-lived high-frequency pho-
nons can be initialized deep in their quantum ground states and can
preserve coherent information for extended periods of time in the
presence of various decoherence channels. Optomechanical systems
using high-frequency (gigahertz) phonons have enabled ground-state
cooling (16), quantum control at the single-phonon level (17, 18),
and remote entanglement between mechanical resonators (19–21).
However, it may be difficult to implement more sophisticated quan-
tum protocols using these systems because of spurious forms of laser
heating that threaten robust ground-state operation within microscale
and nanoscale systems (16, 18, 22). New device strategies may be nec-
essary to mitigate these decoherence mechanisms for robust quantum
optical control of high-frequency phonons.

Efficient optomechanical coupling to high-frequency bulk acoustic
waves within macroscopic systems offers an alternative path to
robust quantum control of phonons. Optical access to these phonons
within pristine crystalline solids yield greatly reduced surface inter-
actions and favorable thermal characteristics to mitigate spurious laser
heating (23, 24). These resonators also grant access toworld-record f ⋅Q
products (23), a key figure of merit that characterizes decoupling of
a resonator from its thermal environment (15). While these bulk
acoustic phonon modes have been accessed through Brillouin-like
coupling using a free-space laser beam (24, 25), new strategies are
needed to translate this physics into cavity optomechanical systems

as the basis for phonon counting (17, 26), generation of nonclassical
mechanical states (18), and efficient transduction of information be-
tween optical and phononic domains (27).

Here, we realize a cavity-optomechanical system that harnesses
high-frequency (13GHz) bulk acoustic phononmodes within amacro-
scopic crystal, offering an array of properties that open the door to
robust quantummanipulation of phonons. These high-frequency pho-
nons, with large (20 mg) motional masses, are used to mediate resonant
coupling between two distinct modes of an optical cavity through
Brillouin interactions. To enable beam splitter and entanglement in-
teractions as the basis for quantum optical control of phonons, we
engineer the multimode spectrum of the optical cavity to break the
symmetry between the Stokes and anti-Stokes processes while al-
lowing resonant driving of a chosen optical mode. Resonant driving
allows us to attain intracavity photon numbers that aremore than six
orders of magnitude larger than those of high-frequency microscale
counterparts (16). These resonantly enhanced photon numbers permit
large (megahertz) optomechanical coupling rates and greater than unity
cooperativities, necessary for efficient control of phonons using light. In
addition, we demonstrate that phase-matched Brillouin interactions
produce controllable coupling to one or more phonon modes, opening
the door to new forms of multimode entanglement (28). Looking be-
yond the field of cavity quantum optomechanics, this device strategy
presents new opportunities for sensitive materials spectroscopy and os-
cillator technologies.

Bulk crystalline optomechanical system
In what follows, we explore optomechanical interactions mediated by
macroscopic phonon modes within the bulk crystalline cavity optome-
chanical system of Fig. 1A. A 5.2-mm-thick flat-flat quartz crystal is
placed within a nearly hemispherical Fabry-Pérot cavity having high-
reflectivity (98%) mirrors; this optomechanical assembly is cooled
to ~8 K temperatures to greatly extend the phonon lifetimes within
crystalline quartz. At room temperature, high-frequency phonons
(>10 GHz) have a mean free path (~100 mm) that is much smaller
than the crystal dimension. Just as the optical Fabry-Pérot resona-
tor supports a series of standing electromagnetic waves (red and
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blue) seen in Fig. 1A, the planar surfaces of the quartz crystal pro-
duce acoustic reflections to form an acoustic Fabry-Pérot resonator
that supports a series of standing-wave elastic modes (green) at
these low temperatures. To avoid anchoring losses, an annular spacer
prevents the crystal surface from contacting the mirror; this same
spacer sets the position of the crystal (d) within the cavity.

These high-frequency bulk acoustic phononmodes are used tome-
diate efficient coupling between distinct longitudinal optical modes of
the Fabry-Pérot cavity through a multiresonant (or multimode) opto-
mechanical process. Coupling occurs through a Brillouin-like opto-
mechanical process when the time-modulated electrostrictive optical
force distribution, produced by the interference between distinct modes
of the Fabry-Pérot cavity, matches the elastic profile (and frequency)
of a bulk acoustic phonon mode. The same intrinsic photoelastic
response that generates the optical forces within the crystal also mod-
ulates the refractive index of the crystal via elastic-wave motion.
Through the formation of a time-modulated photoelastic grating, these

“Brillouin-active” elastic waves mediate dynamical Bragg scattering
(or energy transfer) between distinct longitudinal modes of the optical
Fabry-Pérot cavity.

Because of the extended nature of the optomechanical interaction
within the crystal, phase matching and energy conservation deter-
mine the set of phonon modes (Wm, qm) that can mediate resonant
coupling between adjacent optical modes (wj, kj) and (wj−1, kj−1) of
the Fabry-Pérot cavity (see Fig. 1A). One finds that the Brillouin-
active phonons must satisfy the conditions qm = kj−1 + kj and Wm =
wj − wj−1 to mediate dynamical Bragg scattering within the crystal.
Neglecting some details pertaining to modal overlaps, one expects
that phonons in a narrow band of frequencies near the Brillouin fre-
quency (WB ≃ 2wjua/uo) can meet this condition; here, ua(uo) is the
speed of sound (light) in the quartz crystal. Within the z-cut crystal-
line quartz substrate, this expression leads us to expect intermodal
coupling atWB≃ 2p × 12.7 GHz when driving the optical cavity with
1.55-mm wavelength light. On the basis of the resonance condition,
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Fig. 1. The multimode cavity optomechanical system. (A) Schematic of an optomechanical system that consists of a bulk acoustic wave resonator that is placed
inside an optical cavity. Two distinct standing-wave longitudinal optical modes interact through electrostrictive coupling with a standing-wave longitudinal phonon
mode formed within the planar crystalline quartz crystal at cryogenic temperatures (~8 K). Large mode volumes for both light and sound result from macroscopic
geometrical parameters: Lac ≃ 5.2 mm, Lopt ≃ 9.1 mm, and d ≃ 0.15 mm. (B) Assuming no optical reflections in the quartz-vacuum interface, one obtains equally spaced
longitudinal optical modes. Therefore, a phonon mode mediating intermodal optomechanical interactions can scatter incident laser light at wj to adjacent optical
modes wj+1 and wj−1 with nearly equal scattering rates. (C) However, modest optical reflections (~4%) in the quartz-vacuum interface, which lead to notable non-
uniformity in optical mode spacing, can be exploited to bias our system to strongly favor one scattering process (wj→wj−1) over the other (wj→wj+1). The variation in
cavity resonances arises because of dispersive shifts of cavity resonances arising from multipath interference. (D) The reflection spectrum of the optical cavity obtained
by frequency sweeping an incident laser light reveals this variation in optical mode spacing (or FSR) between adjacent fundamental Gaussian modes. a.u., arbitrary
units. (E) Measurement of the FSR over a wider frequency range by sweeping the laser from 1548- to 1552-nm wavelength shows large undulation (2.6 GHz) in the FSR
as a function of the optical cavity frequency. Consequently, we find multiple pairs of resonances with frequency differences that are equal to the Brillouin frequency,
which is a necessary requirement for intermodal optomechanical coupling in our system.
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we seek a Fabry-Pérot designwhose free spectral range (FSR), defined as
w j

FSR ¼ wj � wj�1, matches the Brillouin frequency WB.
Most applications of optomechanical interactions require a means

of selecting between the Stokes and anti-Stokes interactions. Conven-
tional single-mode cavity optomechanical systems use the detuning of
an external drive field from a single-cavity resonance to produce this
asymmetry. By comparison, thismultimode systemoffers the possibility
for resonant pumping, which carriesmany advantages (seeDiscussion).
However, in the case when the optical Fabry-Pérot resonator has reg-
ular mode spacing (i.e.,w j

FSR ¼ w j�1
FSR), resonant driving of the optical

cavity presents a problem; a Brillouin-active phononmode (Wm) that
matches the multimode resonant condition will resonantly scatter
incident photons of frequency wj to adjacent cavity modes wj−1

and wj+1 with nearly equal probabilities (see Fig. 1B).
The introduction of the quartz crystal into the optical Fabry-Pérot

resonator provides an elegant means of solving this problem; modest
optical reflections (~4%) produced by the surfaces of the crystal shift
the modes of the Fabry-Pérot cavity. As a result, the typically uniform
density of modes (Fig. 1B) is transformed into a highly nonuniform
density of modes (Fig. 1C) such thatw j

FSR ≠ w j�1
FSR. Using this strategy,

we are able to choose between the Stokes (wj → wj−1) and anti-Stokes
(wj−1→wj) processeswith high selectivity, evenwhen the external drive
field is directly on resonance. For example, Fig. 1C illustrates how a
dispersively engineered mode spacing (w j

FSR ≠ w j�1
FSR) permits us to

bias the system for Stokes scattering with resonant optical driving
at frequency wj.

This modification to the density of modes can be seen from reflec-
tion measurements of this bulk crystalline optomechanical system
(Fig. 1D), which reveal a large (~21%) undulation in the FSR of the
optical Fabry-Pérot resonator; Fig. 1E shows the measured frequency
spacing between adjacent optical resonances (w j

FSR ¼ wjþ1 � wj)
when an incident laser field is mode-matched to the fundamental
Gaussian mode of the cavity. The observed variation in optical FSR
agrees well with scatteringmatrix treatments of the system (see section
S1). The large spread in mode separations makes it straightforward to
find pairs of opticalmodeswhose frequency difference satisfies themul-
timode resonance condition. Within the measurements of Fig. 1E, one
can readily identify three sets of modes (green) that satisfy this con-
dition.Moreover, this dispersive shift permits us to fine-tune the FSR of
a given mode pair to match Brillouin frequency through a small (<1 K)
change in temperature (see section S1).

Even with resonant driving of the optical mode, this form of sym-
metry breaking results in a large (>1000-fold) difference between the
Stokes and anti-Stokes scattering rates. In conventional single-mode
cavity optomechanical systems, this large Stokes/anti-Stokes asym-
metry is produced by far-detuning the drive from an optical cavity at
the expense of the intracavity photon number. In contrast, this multi-
mode optomechanical system permits greatly enhanced intracavity
photon numbers for the same input power through resonant driving
(29). The relative strength of the Stokes/anti-Stokes scattering rates in
the case of resonant driving is determined by the ratio (2Dw/k)2, where
Dw ¼ w jþ1

FSR � w j
FSR is the difference in the FSRbetween adjacent optical

modes and k is the optical mode linewidth (see section S7). Because Dw
is well resolved from the linewidth (i.e., 2Dw/k ≃ 36), we can virtually
eliminate the Stokes or anti-Stokes interaction by resonantly exciting an
appropriately chosen mode.

The multimode coupling described above can be represented by
the interaction Hamiltonian Hm

int ¼ �ℏgm0
�
a†jþ1ajbm þ a†j ajþ1b

†
m

�
(30). Here, a†j is the creation operator for the optical mode at fre-

quency wj ,b
†
m is the creation operator for the phonon mode at frequency

Wm, and gm0 is the single-photon coupling rate that characterizes the
strength of the optomechanical interaction (see section S2, A to C).
This single-photon coupling rate describes the change in the fre-
quency spacing between the two optical modes resulting from the dy-
namical modulation of the refractive index of the crystal. Because the
acoustic FSR (ua/2Lac) of the bulk acoustic waves within our quartz
substrate is much smaller than the optical linewidth (k/2p), more than
one phonon mode (Wm) near the Brillouin frequency (WB) can partic-
ipate in the optomechanical coupling. Hence, the total interaction
Hamiltonian, which includes contributions from all these phonon
modes, becomes Hint ¼ ∑mHm

int.
To calculate the single-photon coupling rate, gm0 , we consider the

interaction energy Hint = − ∫vdVs(r) ⋅ S(r) for photoelasticity-mediated
coupling between light and sound fields, where s(r) is the electrostric-
tively induced stress and S(r) is the phonon mode’s strain field. For sim-
plicity, we assume coupling between longitudinal phonon modes
propagating in the z direction with linearly polarized electromagnetic
modes in the x direction. The dominant stress tensor component
s ≡ sz ¼ �ð1=2ÞD0D2r p13ExðzÞ2, where D0 (Dr) is the vacuum (rela-
tive) permittivity of the optical cavity, p13 is the relevant photoelastic
constant of the quartz crystal, and Ex is the electric field of the optical
cavity mode. Similarly, the dominant strain component S ≡ Sz =
∂uz/∂z, where uz is the displacement field of the phonon mode. We
use the normal mode expansion of the electric and acoustic dis-
placement fields [i.e., ExðzÞ ¼ ∑jEj sinðkjzÞ

�
aj þ a†j

�
and uzðzÞ ¼

∑mUm cosðqmðz � dÞÞðbm þ b†mÞ] to obtain the following interaction
Hamiltonian in the rotating wave approximation

Hint ¼ �∑
j;j’;m

∫dVD0D
2
r p13qmUmEjEj′sinðkjzÞsinðkj′zÞsinðqmðz � dÞÞ

� a†j aj’bm þ aja
†
j’b

†
m

� �
ð1Þ

where Ej ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏwj=ðD0DrVoptÞ

p ðUm ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=ðrVacWmÞ

p Þ is the zero-
point amplitude of the electric (acoustic) field, kj (qm) is the optical
(acoustic) wave vector of the standing-wave optical (acoustic) mode,
Vopt (Vac) is the effective mode volume of the optical (acoustic) mode,
d is the position of the crystal within the optical cavity, and r is the
mass density of the crystal (see section S2D). Expressing Eq. 1 as
�∑mℏgm0

�
a†j aj′bm þ aja

†
j′b

†
m

�
, we see that the single-photon coupling

rate gm0 for intermodal optomechanical coupling between two optical
modes (wj, kj) and (wj+1, kj+1) mediated by a phonon mode (Wm, qm)
is given by

ℏgm0 ¼ ∫dVD0D2r p13qmUmEjEj′sinðkjzÞsinðkj′zÞsinðqmðz � dÞÞ ð2Þ

Using the parameters of our system, Eq. 2 predicts a maximum
single-photon coupling rate of jgm0 j ≃ 2p × 24 Hz. Note that this cou-
pling rate is produced by a phonon mode with a motional mass of
20 mg, which is 1 million to 100 million times larger than previous
gigahertz frequency optomechanical systems (see Materials and
Methods) (12, 13, 31).

The wave vector–selective nature of this coupling enables new ap-
proaches to precisely tailor interaction with one or more phononmodes.
This system differs from conventional Brillouin scattering because
even phonon modes that satisfy both energy conservation and

SC I ENCE ADVANCES | R E S EARCH ART I C L E

Kharel et al., Sci. Adv. 2019;5 : eaav0582 5 April 2019 3 of 8

 on M
ay 9, 2020

http://advances.sciencem
ag.org/

D
ow

nloaded from
 

http://advances.sciencemag.org/


phase-matching requirements can have vanishing optomechanical
coupling rates. This intriguing new feature arises because the cou-
pling to a particular phonon mode also depends on the location of
the crystal (d) inside the optical cavity. For instance, the overlap in-
tegral in Eq. 2 yields a coupling rate of zero when the position of the
crystal is such that nodes of a phonon mode coincide with the anti-
nodes of the optical forcing function.

Despite the fact that this current apparatus does not permit us to
change the crystal position, we can still control the number of phonon
modes that participate in the optomechanical interaction. Independent
of crystal location, a pair of adjacent opticalmodes is guaranteed to cou-
ple to at least one phonon mode near the Brillouin frequency because
the phase-matching condition is relaxed by the crystal’s finite length.
However, by using optical resonances at different wavelengths, one
can change the position of the nodes inside the crystal, thereby selecting
a different group of phonons to mediate optomechanical coupling (see
section S2D).

RESULTS
Probing coherent optomechanical response
We explore the optomechanical coupling in our system by probing its
coherent response to an optical drive. Specifically, we use the well-
known techniques called optomechanically induced amplification
(OMIA) and optomechanically induced transparency (OMIT) (32).

These measurements are performed using a tunable laser at fre-
quency wl, whose output is split into two arms (see Fig. 2A). Laser light
in one arm is intensity-modulated at a variable frequency (W) using a
microwave generator. Light in the other arm is frequency-shifted towl+
2p × 44.0 MHz using an acousto-optic modulator (AOM). This AOM-
shifted light acts as a local oscillator (LO) such that the Stokes and anti-
Stokes signals appear as distinct tones in the radio-frequency (rf )
spectrum analyzer during heterodyne detection. The tones at frequen-
cies wl and wl − W serve as control and probe lasers, respectively. The
strong control laser (wl) drives the higher-frequency optical mode at
wj+1, whereas the weak probe laser (wp = wl − W) is swept near the
lower-frequency optical mode at wj (see inset i of Fig. 2A). The third
tone atwl +W is irrelevant, as it is not resonant with the optical cavity
modes. Light is delivered to and collected from the optical cavity
through a combination of fiber collimators and free-space optics.
Light transmitted through the optical cavity is combined with the
LO and detected using a photoreceiver, which is connected to an rf
spectrum analyzer. This spectrum analyzer monitors the beat note be-
tween the transmitted probe laser and the LO by tracking the frequency
(W) of the microwave generator. Heterodyne detection of the probe
light transmitted through the optical cavity provides a direct measure-
ment of the intracavity probe power.

This OMIA measurement (Fig. 2B) reveals a broad optical cavity
resonance of linewidth kj ≃ 2p × 73 MHz, consistent with the mir-
rors’ reflectivities. Near the center of the optical resonance, we find
three narrow resonances (see inset ii of Fig. 2B) corresponding to
phonon modes near the Brillouin frequency of 12.661 GHz. These
resonances are equally spaced by ~612 kHz, the expected acoustic
FSR ua/2Lac.This result demonstrates optomechanical coupling to
multiple high-frequency longitudinal phonon modes, in a manner
consistent with the phase matching described by Eq. 2.

In what follows, we tune the optical wavelength to excite a different
pair of optical resonances, ensuring that only a single-phonon mode
mediates the optomechanical interaction. A typical OMIA spectrum

inwhich the optomechanical coupling ismediated by a single-phonon
mode is shown in Fig. 3A. We perform both OMIA and OMIT mea-
surements to determine the associated single-photon coupling rate
and the intrinsic mechanical damping rate. When the system is driv-
en by a strong control laser and a weak probe, we can describe the
OMIA (OMIT) phenomenawith a linearized interactionHamiltonian
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Fig. 2. Optomechanical coupling to a multitude of phonon modes. (A) Sche-
matic of the measurement setup used to perform OMIA. A strong control and a weak
probe laser are synthesized from the same tunable laser source using an intensity
modulator (IM). This light is coupled into and out of the optical cavity using fiber-
optic collimators and free-space lenses. The frequency of the tunable laser is set so
that the control laser is directly on resonance with the high-frequency optical
mode at wj+1 (see inset i). The probe laser is swept near the lower cavity mode
at frequency wj by sweeping the rf drive frequency (W) of the intensity modulator.
To examine the coherent response of the intracavity probe field due to opto-
mechanical coupling, a heterodyne measurement is performed between the trans-
mitted probe light and the AOM-shifted laser light. (B) We observe coherent buildup
of the intracavity photon number as the probe laser is scanned near the optical
mode wj. The optical cavity decay rate of kj ≃ 2p × 73 MHz obtained for this mode
is consistent with the losses at the two mirrors. In addition, we see sharp reso-
nances on the optical mode spectrum corresponding to the phonon-mediated
transfer of energy from the high-frequency optical mode at frequency wj+1 to
the lower-frequency optical mode at wj. A close zoom in of the optical mode spec-
trum near the center of the optical resonance reveals three high-frequency acoustic
modes around 12.661 GHz with a frequency spacing of ~612 kHz (see inset ii).
This frequency spacing is consistent with the acoustic FSR of ua/2Lac for the
standing-wave longitudinal modes formed in crystalline quartz along the z axis.
These acoustic modes have very high longitudinal mode numbers (or overtone
number) of m ≈ 2.08 × 104.
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Hm
int ¼�ℏgm0

ffiffiffiffiffi
nc

p �
ajbmþa†j b

†
m

��
Hm

int ¼�ℏgm0
ffiffiffiffiffi
nc

p �
a†jþ1bmþb†majþ1ÞÞ,

where nc is the intracavity photon number for the optical mode at wj+1

(wj). Assuming that the control laser is directly on resonance with the
optical mode at wj+1 (wj), this effective Hamiltonian predicts a relative
OMIA peak height (OMIT dip) of 1/(1 ∓C)2, whenW =Wm. Here,C ¼
4ncjgm0 j2=ðkGmÞ is the cooperativity and Gm is the intrinsic mechanical
damping rate. Moreover, the linewidth of this OMIA peak (OMIT dip)
is given by Geff = (1 ∓ C)Gm (15).

To measure Gm and gm0 , we varied the control laser power and
measured the relative heights and linewidths of the OMIA peaks

(OMIT dips) (see Fig. 3, B to G). As expected from theory, the relative
heights of the OMIA peaks (OMIT dips) increased (decreased) non-
linearly, whereas the effective linewidth, Geff, decreased (increased)
linearly as the control laser power was increased from 7.8 to 118 mW.
Extrapolating the linear fit in Fig. 3G to zero input power gives Gm≃
2p × 86 kHz (acoustic Q factor ≃ 1.5 × 105). To understand the
acoustic linewidth characteristics, it is useful to view the acoustic
propagation within the quartz crystal as being analogous to optical
beam propagation within a Fabry-Pérot cavity. This is because the
acoustic wavelength (~500 nm) is much smaller than the lateral extent
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Fig. 3. Characterization of the zero-point coupling rate and the mechanical dissipation rate. (A) We perform OMIA measurements on a single-phonon mode
using a blue-detuned control laser that is resonant with the high-frequency optical mode (see inset). (B) As we increase the power in the control laser, the height of the
peak corresponding to the OMIA signal increases nonlinearly with the control laser power, as displayed in (C). The linewidth of the OMIA peak, however, decreases with
the control power, as seen in (G). (D) OMIT measurements are performed with the same phonon mode by simply red-detuning the control laser. Note that, because the
control laser has a slight offset relative to the low-frequency optical mode at wj, the center of the cavity resonance shifts, but the OMIT dip is observed exactly at a
phonon frequency of 12.645 GHz. (E) The dip of the OMIT signal decreases nonlinearly as a function of the control power, as displayed in (F). The linewidth of the OMIT
signal, however, increases linearly with the control power, as seen in (G). From the dependence of linewidth as a function of the control laser power, we obtain a cold
cavity linewidth Gm/2p ≃ 86 kHz for the phonon mode at 12.645 GHz.
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of the excited acousticmode (beam radius≃ 43 mm)within the crystal.
Analogous to diffraction losses within an optical Fabry-Pérot cavity,
propagation of a Gaussian acoustic beam within the planar quartz
crystal introduces acoustic diffraction losses, which is the domi-
nant source of loss in this present system (see section S5). However,
these acoustic Q factors can be markedly increased by shaping
the surfaces of the quartz crystal to compensate for the effects of
diffraction (24).

The cooperativities (C) and intrinsic mechanical damping rate (Gm)
obtained from experiments along with nc calculated from measuring
input control laser power Pin give gm0 ≈ 2p� 18 Hz, consistent with
the theoretically predicted maximum value of 2p × 24 Hz (see sections
S2 and S3). Note that, based on the measured normalized reflection
spectrum (see Fig. 1D) and fraction of light transmitted (85%) on
resonance, we assumed critical coupling to the optical mode and negli-
gible internal losses (i.e.,ki≪ 2kext) while calculatingnc fromPin. So far,
we have probed the system’s coherent response. Next, we explore
thermal fluctuations of the phononmode and self-sustained oscillations
(15) as we increase the cooperativity to greater than unity.

Thermal fluctuations and phonon self-oscillation
We measure thermal fluctuations of the mechanical mode through
spontaneous light-scatteringmeasurements.We use a control laser that
is resonant with the higher-frequency optical mode wj+1 (see Fig. 4A);
no probe field is supplied for thesemeasurements. The thermally popu-
lated phonon mode mediates scattering of incident control photons
from frequency wj+1 to wj through the Stokes process. Heterodyne de-
tection is used to monitor the power spectrum of this spontaneously
scattered Stokes light, as shown in the inset i of Fig. 4B. As the control
laser power is increased,we observe a sharp increase in themagnitude of
the scattered Stokes light accompanied by spectral narrowing of the het-
erodyne beat tone (inset ii of Fig. 4B). Optomechanical systems in the
blue-detuned regime display these lasing transitions at C = 1, when
Geff = Gm(1 − C) = 0. When Geff < 0 (i.e., C > 1), parametric instability
initially causes thermal fluctuations to grow exponentially in time
and eventually saturate to reach coherent self-sustained oscillations.
This phenomenon is well studied in many optomechanical systems
(29, 33) and is also commonly known as “phonon lasing” (15). The
measurement of total backscattered light from the cavity using a power
meter as a function of the input control laser power (Fig. 4B) reveals a
self-oscillation threshold of 137 mW, consistent with the threshold
(~140 mW) predicted from the measured values of nc, gm0 , k, and Gm.
The total output Stokes power after lasing is consistent with a slope ef-
ficiency of 62% (see section S6A). Note that the intracavity photon
number nc≈ 6.3 × 109 is achieved for the highest available control laser
power of 204 mW. Such a large intracavity photon number produces
cavity-enhanced coupling rate of gm ¼ ffiffiffiffiffi

nc
p

gm0 ¼ 2p� 1:5MHz and
C = 1.4. This coupling rate is already more than 10 times larger than
Gm, as required for high-fidelity transduction of quantum information
from the optical to the mechanical domain (or vice versa) (27). Last, we
note that, although the low signal-to-noise ratio prevented us from
measuring thermal fluctuations using a red-detuned drive, these mea-
surements can be readily performed by improving the finesse of the op-
tical cavity (34).

DISCUSSION
These results lay the foundation for a promising new class of macro-
scopic cavity optomechanical systems that rely on bulk acoustic modes

of a crystalline solid—rather than subwavelength structural control—to
achieve high-frequency multimode interactions. Because phase match-
ing determines the phonon frequency, this approach permits coupling
to massive (20 mg), high-frequency phonon modes without size re-
duction. Resonant optical driving of this multimode system produces
appreciable coupling rates (1.5MHz) to high-frequency (13 GHz) pho-
nons and C > 1. These results are obtained using the simplest of flat-
flat crystal geometries, meaning that these same principles can be
readily used to transform practically any transparent crystal into a
high-frequency cavity optomechanical system. Because the Brillouin
frequency depends on the optical wavelength and material parameters,
these same strategies can be used to harness phonons over a tremen-
dous range of frequencies (e.g., 5 to 100 GHz) by designing the sys-
tem around different wavelengths and materials. The versatility and
robustness of this strategy should lend itself to new types of hybrid
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Fig. 4. Thermal fluctuations and regenerative self-oscillations of a high-frequency
phononmode. (A) To observe thermal fluctuations of the phonon mode, we turn
off the probe laser and tune a strong control laser directly on resonance with the
high-frequency optical mode. The thermally populated phonon mode spontane-
ously scatters light from the higher-energy optical mode to the lower-energy
optical mode (Stokes field); this light exits our optical system through both mirrors.
(B) From the measurement of back-reflected optical power as a function of the
input control laser power, we observe a clear threshold behavior at 137 mW
corresponding to regenerative self-oscillation of the phonon mode (i.e., C = 1).
Before threshold, a small (~2.6%) back-reflection results from imperfect coupling
of the control laser to the optical mode at w2. However, once self-oscillating, pho-
nons scatter a large fraction of the input control laser into the Stokes light,
which exits the optical cavity through both forward and backward directions, a
substantial increase in the back-reflected optical power occurs. Furthermore, from
the heterodyne beat tone of the scattered Stokes light with the frequency-shifted
version of the input control laser, we observe a dramatic line narrowing of
phonons as we cross the lasing threshold, as displayed in insets i and ii.
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quantum systems, new forms of materials spectroscopy, and studies
of laser-oscillator physics.

Our quartz-based optomechanical system has many promising
features in the context of cavity quantum optomechanics. Large opto-
mechanical coupling rates (>60MHz) to these high-frequency phonons
could be achieved even without miniaturization because this macro-
scopic system can store a large number of intracavity photons (>1013)
through resonant driving (35). The demonstrated coupling rate of
1.5 MHz is already large enough to enter the strong-coupling regime
(gm > k/2, Gm/2) if the optical finesse is boosted from its current
value (F ≈ 170) toF ≈ 104. In this regime, one can deterministically
swap excitations between the optical and phononic domains for quan-
tum transduction and the creation of nonclassical mechanical states
(15). Moreover, because of the potential for reduced thermal decoher-
ence and the opportunity to reach phonon counting sensitivities of less
than one, this system shows great promise as a platform to implement
probabilistic schemes for quantum-state preparation (see section S8).
Owing to the low (high) optical absorption (thermal conductivity)
of pristine crystalline quartz [<4.3 dB/km (36)] and greatly reduced
(<10−4) photon-surface interactions relative to high-frequency mi-
croscale counterparts (12), this system offers a promising path to robust
quantum optomechanics.

Hybrid quantum systems using long-lived phonons within bulk
acoustic resonators could be a valuable resource for quantum infor-
mation processing. It is possible to increase the Q factor of these high-
frequency phonons within quartz from their present values (1.5 × 105)
to 4 × 107 by shaping the acoustic resonator into a plano-convex geom-
etry (24). These highly coherent bulk acousticmodes could then be useful
as quantum memories. Moreover, these high-Q phonon modes could
readily permit strong coupling to individual defect centers for quantum
information processing (see section S5), a result that is perhaps surprising
given the large acoustic mode volumes relative to previous proposals
(37, 38). Simultaneous optomechanical and electromechanical control
of bulk acoustic wave phonons within piezoelectric crystals also offers
a path toward high-fidelity microwave-to-optical conversion (39, 40).

Beyond the conventional goals of quantum optomechanics, this op-
tomechanical system presents new opportunities formaterials spectros-
copy and precision measurement. Sensitive metrology of cryogenic
phonon physics and defect centers can be performed in a wide array
of materials to understand various decoherence channels for phonons.
Moreover, bulk acoustic resonators show great potential for quantum
noise–limited optomechanical oscillators with ultranarrow funda-
mental linewidth (<1 nHz) as they can support large coherent phonon
populations (>1012) (see section S6). These highly coherent oscillators
could be used for precision sensing (41), time keeping (42), and the
exploration of new physics (43).

MATERIALS AND METHODS
The planar crystalline z-cut a-quartz crystal (Aa grade) used for this
experiment was obtained commercially from Rocky Mountain Instru-
ment Co. For the theoretical estimate of the coupling rate, we used
the following parameters: n = 1.55, p13 = 0.27, r = 2648 kg/m3, Lopt =
9.13 mm, Lac = 5.19 mm, A ≃ p × (61 mm)2, wj = 2p × 193.4 THz, and
Wm = 2p × 12.65 GHz (see section S2D).

The Gaussian optical modes, with beam waistwopt≃ 61 mm, drive a
longitudinal standing-wave phonon mode with Gaussian transverse
profile with beam waist wac ≃ 43 mm. Therefore, the effective motional
mass of the phonon mode in our systemmeff ≈ prLacw2

ac=4 ¼ 20 mg.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/5/4/eaav0582/DC1
Section S1. Asymmetric cavity mode spacing
Section S2. Hamiltonian treatment
Section S3. Optomechanically induced amplification
Section S4. Optomechanically induced transparency
Section S5. Acoustic diffraction loss
Section S6. Thermal fluctuations and phonon lasing
Section S7. Relative scattering rate
Section S8. Phonon counting sensitivity
Fig. S1. Scattering matrix treatment to determine optical mode spectrum.
Fig. S2. Variation of optical FSR with crystal displacement.
Fig. S3. Optical cavity reflection spectrum at cryogenic temperature.
Fig. S4. Normalized coupling rate.
Fig. S5. Cartoons depicting OMIA and OMIT measurements.
Fig. S6. OMIA measurements.
Fig. S7. Acoustic diffraction loss.
Fig. S8. Slope efficiency of the phonon laser.
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Fi . S1. Scattering matrix treatment to determine optical mode spectrum. a A cartoon of our optical system, which
consists of two optical mirrors with a quartz crystal placed in between them. A transfer matrix (T ) relates the incoming and
outgoing optical fields in our system. b, For an optical cavity in vacuum, the standing wave cavity modes are spaced equally by
the optical free spectral range (FSR) given by c/2Lopt. c, The mode spectrum of an optical cavity can vary quite dramatically
when a medium with refractive index n is placed in between the mirrors. As expected the frequency spacing between the optical
modes decreases because of increase in the optical path length. In addition, there is a variation in the optical free spectral
range (i.e., change in the spacing between adjacent optical modes) as a function of frequency. Surprisingly, a large variation in
FSR (∼ 21%) occurs even though the reflectivity of the quartz-vacuum interface is rather small (∼ 4%).

S S1. A

In this section, we use scattering/transmission matrix approach to calculate the mode spectrum of an optical cavity
consisting of a bulk crystal placed in between two mirrors (see fig. S1a). Unlike equally spaced standing-wave
longitudinal modes of an optical cavity in vacuum, we show that our optical system supports a rich mode spectrum
with mode spacing that vary dramatically as a function of both the optical mode number and the crystal position.
Our one dimensional model consists of a Fabry-Pérot optical cavity having power reflectivities of R1 and R2 and
transmission of T1 and T2. A dielectric material of index n is placed in between the two mirrors. We assume the
mirrors are lossless so that Ri + Ti = 1, where i = 1, 2. The power reflectivity at each crystal face, R0, is given
by (1 − n)2/(1 + n)2. For simplicity, we assume plane wave optical fields and focus on the cavity’s reflection and
transmission spectrum.
We define the plane wave optical fields propagating along positive direction as E = Re{aei(kz−ωt)}. The phase φ
acquired by the plane wave after propagating a distance z in a medium with refractive index n is given by φ = kz =
nωz/c, where c is the speed of light in vacuum. A transmission matrix (T ) relates the input field amplitudes a1, a2

and output field amplitudes b1, b2 (see fig. S1a) in our system as follows[
b1
a1

]
= T

[
b2
a2

]
(S1)

The transmission matrices for a lossless mirror and for propagation in space are given by

Tmirror =
−i
t

[
−1 r
−r 1

]
and Tprop =

[
eiφ 0
0 e−iφ

]
(S2)

The total transmission matrix for our optical system consisting of the bulk crystal inside the Fabry-Pérot optical
cavity is then given by

T = Tmirror1 · TpropV acuum · TmirrorQuartz · TpropQuartz · TmirrorQuartz · TpropV acuum · Tmirror2

=
−i
t1

[
−1 r1

−r1 1

]
·
[
eiφ1 0

0 e−iφ1

]
· −i
t0

[
−1 r0

−r0 1

]
·
[
eiφ2 0

0 e−iφ2

]
· −i
t0

[
−1 −r0

r0 1

]
·
[
eiφ3 0

0 e−iφ3

]
· −i
t2

[
−1 r2

−r2 1

]
(S3)

Here r1 =
√
R1, r2 =

√
R2, r0 = (1− n)/(1 + n), φ1 = ωt/c, φ2 = nωLac/c, and φ3 = ω(Lopt − Lac − t)/c. The optical

power reflected (Pr) from and transmitted (Pt) through our optical system can then be calculated from the total

g

ection symmetric cavity mode spacing



transmission matrix as follows

Pr =

∣∣∣∣T12

T22

∣∣∣∣2 and Pt =

∣∣∣∣ 1

T22

∣∣∣∣2 (S4)

The analytical expressions for Pr and Pt can be derived in a straightforward way from eqn. (S3); we chose to not
show them here because they are quite cumbersome to display.
Next, we use the analytical expression for Pr along with the known geometrical parameters (d= 0.15 mm, Lac = 5.19
mm, Lopt= 9.13 mm, and n= 1.55) and mirror reflectivities (R1 = R2 = 0.98) to explore the reflection spectrum of
our optical cavity (see fig. S1b-c). We compare the cavity mode spectrum with and without the quartz crystal inside
the optical cavity near experimentally relevant wavelength (1550 nm or ω/2π ∼ 194 THz). Without the crystal inside
the optical cavity, this analytical calculation reveals equally spaced cavity modes, which are separated by the well
known optical free spectral range given by c/(2Lopt). However, when the quartz crystal is placed inside an optical
cavity, we notice that the average spacing between the optical modes gets narrower; this result makes sense as the
optical path length is longer when the crystal is placed inside the cavity. Moreover, we observe a variation in free
spectral range (i.e., change in the spacing between adjacent optical modes) as a function of cavity frequency.
We explored this variation in FSR analytically by changing the parameter d, corresponding to the position of the
crystal inside the cavity (see fig S2a). We observed periodic variations in cavity mode frequencies for each mode
number j (see fig. S2b) as a function of the crystal displacement (∆d). This variation in cavity frequency was λ/2
periodic, where λ is the wavelength of the light; this is a result of the crystal surfaces passing through the nodes and
anti-nodes of the standing wave optical cavity modes. Notice that the amount of frequency variation is different for
each cavity mode. Consequently, the free-spectral range changes both as a function of the cavity mode number (j)
and the crystal position. Therefore, it is relatively easy to tune the FSR to match the Brillouin frequency in this
system.
From theory, we expect a maximum FSR variation as large as 2.94 GHz between 1548 nm and 1552 nm (see fig.
S2c). Furthermore, the difference in FSR between adjacent optical modes (χj = FSRj+1-FSRj) can be as large as
2.47 GHz; the parameter χj is important because it quantifies the degree of asymmetry between the Stokes and the
anti-Stokes scattering processes. Additionally, since the FSR variation is periodic as a function of cavity frequency, it
is possible to find several pairs of cavity modes having FSRs that equal Brillouin frequency.
Next, we compare experimental measurement of the cavity mode spacing with the analytical calculations discussed
above. The reflection spectrum of the cavity was measured at cryogenic temperature (∼ 8 K) by sweeping the laser
wavelength between 1548 nm and 1552 nm and recording the back-reflected power (see fig. S3). After identifying
the resonant frequencies, ωj/2π, we calculate the cavity mode spacing by simply taking the difference of two adjacent
mode frequencies (i.e., FSRj= (ωj+1−ωj)/2π). This analysis revealed periodic variation (see fig. S3b) in cavity mode
spacing, which was similar to the one predicted from theoretical calculation as seen in fig. S2c. However, because of
the uncertainties in the geometrical parameters (such as a exact crystal position t) as we cool our system to cryogenic
temperatures. Therefore, we took the exact crystal location as a free parameter. For t = 152.52 µm, we see a good
agreement between the experimentally determined cavity mode spacing (black dots) and the theoretically calculated
values (green dots) in ig. S3c. With the quartz crystal inside the optical cavity, the maximum FSR variation of 2.6
GHz obtained experimentally agrees well with the predicted value of 2.94 GHz.

S S2. Hamiltonian treatment

In this section, we derive the total Hamiltonian for our optomechanical system. We first derive the Hamiltonian
for the optical and the acoustic fields and eventually add an interaction term that characterizes the acousto-optic
interaction.

A. Hamiltonian for the electromagnetic fields

We consider the case of an electromagnetic field having a single single polarization (x̂−direction) that is subjected
to the boundary conditions defined by the two mirrors. For simplicity, we assume that the electric field vanishes at
the location of the left mirror (z = 0) and the right mirror (z = Lopt). Hence, when we expand the electric field into
the normal modes (standing waves) of the optical cavity

Ex(z, t) =
∑
j

Ejsin(kjz)(âj(t) + â†j(t)) (S5)
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F . S2.Variation of optical FSR with crystal displacement. a, A schematic showing how the crystal
is displaced from its original location d to d + ∆d. b, Plot of the resonant cavity modes, labeled with the longitudinal mode
number j, reveals periodic variation in the mode frequency as a function of the cavity displacement (∆d). This periodicity is
equal to half the wavelength of light (∼1550 nm), corresponding to the crystal moving through the nodes and the anti-nodes
of the standing wave optical cavity modes. Although periodic, the extent of variation in the cavity frequency is different for
each mode; as a result, we obtain a non-trivial variation in the cavity FSR as a function of optical mode number j seen in c.

where âj is the normal mode amplitude, kj = ωj/c, with j = 1, 2, 3, . . ., and the zero-point amplitude of the electric
field is

Ej =

√
~ωj

ε0εeff
r AoptLopt

(S6)
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Fig. S3.Optical cavity reflection spectrum at cryogenic temperature. a, Measurement from 1548 nm to 1552 nm (or
193.3 GHz to 193.8 GHz) (at ∼ 8 K) revealed narrow optical resonances corresponding to longitudinal cavity modes. Some
modes have larger dip depths than others as expected from theoretical calculations. b, We see periodic variation in FSR as a
function of the cavity frequency (or mode number j). This variation is similar to what was predicted from theoretical analysis.
c, To compare theory with experiments, we first change the crystal displacement (∆d); we take this crystal displacement as a
fit parameter as the relative spacing between the crystal and the mirror can change during the cryogenic refrigeration process.
When we choose ∆d = 520 nm, we see that the theoretically obtained mode spacing matches well with the experimentally
obtained data. The maximum FSR variation of 2.6 GHz observed experimentally is close to the theoretically predicted value
of 2.94 GHz.

where ωj is the frequency of the normal mode, εeff
r is the effective relative permittivity of the optical cavity, Aopt is

the effective transverse area of the optical mode, and Lopt is the optical cavity length. The zero-point fluctuation of
the electric field was obtained knowing that the total electromagnetic energy per mode for the ground state is ~ωj/2.
Starting with the Hamiltonian for the electromagnetic fields

Hopt =
1

2

∫
V

dV (εE2 + µoH
2) (S7)

and substituting the normal mode expansions for the electromagnetic fields, we obtain the quantized version of the
electromagnetic Hamiltonian given by

Ĥopt =
∑
j

~ωj
(
â†j âj +

1

2

)
(S8)

Note that the mode amplitude operators satisfy the commutation relations [âj , â
†
j′ ] = δj,j′ and [âj , â

′
j ] = [â†j , â

†
j′ ] = 0.

B. Hamiltonian for the acoustic fields

For the quantization of acoustic fields, we consider a longitudinally polarized (ẑ-direction) acoustic field subject to
free boundary conditions at the surfaces of the crystal, which forms an acoustic Fabry-Pérot cavity. As a starting
point, we assume that the separation between the mirror and the crystal face (d) is vanishingly small (i.e., the crystal



is flush with the mirror). We expand the acoustic displacement field into the normal modes (standing waves) of the
Fabry-Pérot acoustic cavity

uz(z, t) =
∑
m

Umcos(qmz)(b̂m(t) + b̂†m(t)) (S9)

where b̂m is the normal mode amplitude, qm = mπ/Lac, with m = 1, 2, 3, . . ., and the zero-point amplitude of the
acoustic displacement field

Um =

√
~

ρAacLacΩm
(S10)

Here Ωm is the frequency of the acoustic mode, ρ is the density of the medium, Aac is the effective transverse area
of the acoustic mode, and Lac is the thickness of the acoustic Fabry-Pérot cavity. The zero-point fluctuation of the
acoustic field was calculated knowing that the total acoustic energy (kinetic plus potential) per mode for the ground
state is ~Ωm/2. We start with the acoustic Hamiltonian

Hph =
1

2

∫
V

dV

(
ρu̇2 + C

(
∂u

∂z

)2
)

(S11)

where C = v2
acρ is the elastic coefficient and substitute the normal mode expansion to obtain the quantized version

of the acoustic field

Ĥph =
∑
m

~Ωm

(
b̂†mb̂m +

1

2

)
(S12)

Note that the mode amplitude operators satisfy the commutation relations [b̂m, b̂
†
m′ ] = δm,m′ and [b̂m, b̂

′
m] =

[b̂†m, b̂
†
m′ ] = 0.

C. Interaction Hamiltonian

We now consider the interaction Hamiltonian for the optomechanical coupling (see Ref. [43]), which is given by

H int =
1

2

∫
V

dV ε0ε
2
rE

2p13
∂u

∂z
, (S13)

where p13 is the relevant photoelastic constant. Substituting the normal mode expansions for the electric field and
the acoustic displacement field from eqn. (S5) and eqn. (S9) into this interaction Hamiltonian and using the rotating
wave approximation, we obtain

Ĥ int = −
∑
j,j′,m

∫
dV ε0ε

2
rp13qmUmEjEj′ sin(kjz)sin(kj′z)sin(qmz) (â†j âj′ b̂m + âj â

†
j′ b̂
†
m). (S14)

The term â†j âj′ b̂m in the interaction Hamiltonian represents the annihilation of an optical mode at frequency ωj′

and a phonon mode at frequency Ωm to create a photon mode at higher frequency ωj = ωj′ + Ωm (also called the

anti-Stokes process). The other term âj â
†
j′ b̂
†
m represents the conjugate process, whereby a photon at lower frequency

ωj′ and a phonon at frequency Ωm are created from the annihilation of photon at ωj (Stokes process).
Now, if we consider two adjacent standing wave optical modes such that ωj+1−ωj = Ωm, the interaction Hamiltonian

for the coupling to the m-th phonon mode is given by

Ĥ int
m = −~gm0 (â†j+1âj b̂m + H.c.) (S15)

where the single-photon coupling rate for this multi-mode optomechanical system is given by

gm0 =
1

~

∫
dV ε0ε

2
rp13qmUmEj+1Ej sin(kj+1z)sin(kjz)sin(qmz) (S16)

Note that, up to this point, we have assumed that the crystal face is flush with the mirror 1, meaning d = 0.
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F . S4. oupling ate. a,Wez use Gaussian beam propagation to determine the beam waist of the fundamental
longitudinal optical mode inside our optical cavity. The driven acoustic wave inside the crystal also has a Gaussian transverse
mode profile determined by the optical forcing function, which is proportional to the product of pump and Stokes optical field.
b, We observe that appreciable optomechanical coupling occurs over a small set of phonon modes (indexed by longitudinal
mode number m) near the Brillouin frequency. The optomechanical coupling to a single-mode (say m = 20725) is periodic and
can go to zero at certain crystal positions. Nevertheless, for an arbitrary crystal displacement, we still have an appreciable
coupling at least one phonon mode. c, Line cuts in the 2-Dimensional density plot of the normalized coupling rate shows that
tailorable coupling to one (inset i), two (inset ii) or three phonon modes (inset iii) can be achieved by changing the crystal
displacement.

D. Single-photon coupling rate

We use the definition of the coupling rate given in eqn. (S16) along with the zero-point amplitudes of the electric
and the acoustic fields (eqn. (S6) and eqn. (S10)) to calculate the single photon coupling rate

gm0 =
1

~

∫
dV ε0ε

2
rp13qmUmEj+1Ej sin(kj+1z) sin(kjz) sin(qmz) (S17)

This definition of coupling rate, when we account for the finite separation (d) between the mirror and the crystal,
becomes

gm0 = Aε0ε
2
rp13qm

√
~

ρALacΩm

√
ωjωj+1

ε0εeff
r ALopt

×∫ d+Lac

d

dz sin

(
k′j+1

(
z − d+

d

n

))
sin

(
k′j

(
z − d+

d

n

))
sin (qm(z − d)) (S18)

where d is a variable crystal position, and we are considering only the optical fields living inside the crystal for
the acousto-optic overlap in z, and for simplicity we have assumed Aac = Aopt ≡ A. Here, k′j = nkj denotes the
wavevector of the optical modes inside the crystal. The phase factors for the sine functions come from the appropriate
boundary conditions on the electric and acoustic fields at the crystal and mirror surfaces.

Using a trigonometric identity

sin(A) · sin(B) · sin(C) = 1/4(-sin(A-B-C)+sin(A+B-C)+sin(A-B+C)-sin(A+B+C)) (S19)

we see that non-zero spatial overlap and, hence, a non-zero coupling rate occurs when the phase matching requirement
(qm = k′j+1 +k′j) is satisfied. Note that this equation also shows that one can change the coupling rate by changing the
crystal position. For example, as the crystal position is changed along the z-direction the nodes of the strain profile
could line up with the anti-nodes of the optical beat tone (or the forcing function) resulting in zero optomechanical
coupling. For maximum coupling rate to a single acoustic mode, the crystal position (or the optical wavevector) has
to be such that the nodes (anti-nodes) of the strain profile line up with the nodes (anti-nodes) of the optical beat
tone. In this case, the maximum coupling rate can be calculated from eqn. (S17) and is given by

g̃0 ≈
ω2
jn

5p13

2cn2
eff

√
~

ρALacΩm

Lac

Lopt
(S20)
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Fig. S5.Cartoons depicting OMIA and OMIT measurements. a, A strong blue-detuned control laser is resonant with
the higher frequency optical mode while a weak probe is swept near the lower frequency optical mode. b, A strong red-detuned
control laser is resonant with the low frequency optical mode while a weak probe is swept near the higher frequency optical
mode.

where neff is the effective refractive index of the optical mode, and we assumed ωj+1 ' ωj , so that qm = k′j+1 + k′j ≈
2nωj/c. We note that the phase matching (qm = k′j+1 +k′j) and energy conservation (ωj+1−ωj = Ωm) is satisfied for
modes near Ωm ≈ 2ωjnva/c, where va is the velocity of sound inside the medium. Note that the simplified derivation
presented above gives us insights into the dependence of g0 on various material and geometric parameters. However,
to calculate the coupling rate within our actual system, we perform acousto-optical overlap intergal in Eq. (S18),
taking into account the variation (∼ 30 % )in traverse mode area of the Gaussian optical and acoustic modes inside
the cavity (See fig. S4a).

For instance, for two Gaussian optical modes near 1551.0335 nm (i.e., ωj = 2π × 193.4 THz) separated by the
phonon frequency of Ωm/2π = 12.645 GHz, we calculate a maximum coupling rate gm0 /2π ' 24 Hz in our system.
Note that we used the following experimentally relevant geometric and material parameters for the calculation of g0

m:

p13 = 0.27, n = 1.55, ρ = 2648 kg/m
3
, va = 6327 m/s, Lac = 5.19 mm, and Lopt = 9.13 mm.

Next, we explore the coupling rate variation as a function of the crystal position for several longitudinal acoustic
modes near the Brillouin frequency. We define a normalized coupling rate as |gm0 |/g̃0, and calculate optomechanical
coupling to phonon modes the Brillouin frequency; the Brillouin frequency of 12.645 GHz corresponds to a very large
mode number (m= 20725). It is important to note that the precise value of the mode number is not well known due
to the uncertainties in the geometrical parameters and elastic constants at cryogenic temperatures. Our aim here is
to simply compare optomechanical coupling to the longitudinal modes near the Brillouin frequency. A density plot
in fig. S4b reveals that appreciable optomechanical coupling occurs to a few modes near the Brillouin frequency.
This occurs because of the finite spatial integral in eqn. (S17); as a result of the finite length of the crystal, there
is an uncertainty in the acoustic wave-vector which relaxes the phase matching condition and grants optomechanical
coupling to more than one phonon modes (see Ref. [24]). The bandwidth of coupling (∆νB = 1.76va/2Lac) is ∼ 1.1
MHz in our system.

The coupling to an individual phonon mode (say m= 20725) is periodic in the crystal displacement (see fig.
S4b) and it can be zero at certain crystal positions (see fig. S4c.ii). Nevertheless, appreciable optomechanical
coupling (normalized coupling rate > 0.5) occurs for at least one phonon mode irrespective of the crystal displacement.
Therefore, as long as the linewidth of the optical mode (κ/2π) is greater than the coupling bandwidth (∆νB),
we observe appreciable optomechanical coupling to at least one phonon mode irrespective of the crystal position.
For a given pair of optical modes, changing the crystal position using a piezo-actuator should enable controllable
optomechanical coupling to one or more phonon modes in our system (see fig. S4c.i-iii). Alternatively, coupling to
one or more phonon modes can be engineered by changing the wavevector of the optical fields by moving to a different
pair of optical resonances (with frequency difference matching the Brillouin frequency). We can use eqn. (S17) to see
that the relative coupling rate to phonon modes near Brillouin frequency changes as we change the wave-vector (or the
frequency) of the optical modes modes. This approach avoids the experimental complexity of adding a piezo-actuator
in our optomechanical system.

S S3. O

In this section, we follow the approach outlined in Ref. [44] to derive the intra-cavity optical spectrum during
OMIA measurements. The optomechanical Hamiltonian accounting for the external drive fields (i.e., the control laser

ection ptomechanically induced amplification ( )OMIA



Parameters values
ω2 2π× 193.419 THz
Ωm 2π× 12.645 GHz
κ1 2π× 71 MHz
κ2 2π× 81 MHz
κext
1 κ1/2
κext
2 κ2/2

Table S1. Optical and acoustic parameters.We choose a pair of optical modes separated by the Brillouin frequency for
OMIA/OMIT measurements. The loss rate of each cavity mode was obtained separately from the OMIA/OMIT measurements
by sweeping the tunable laser source through the optical resonances and measuring the reflection spectrum.

and the probe laser) is given by

H = ~ω1a
†
1â1 + ~ω2a

†
2a2 + ~Ωmb

†
mbm − ~gm0 (a†2a1bm + b†ma

†
1a2)

+ i~
√
κext

1 αp(a
†
1e
−iωpt − a1e

iωpt) + i~
√
κext

2 αl(a
†
2e
−iωlt − a2e

iωlt) (S21)

We normalize the optical power launched into the cavity such that Pin = ~ω 〈α†α〉 . We assume a strong control laser
and a weak probe; within the undepleted pump approximation, the dynamics of the mode at frequency ω2 is not
influenced by the optomechanical coupling and it can be described by the following equation of motion derived from
the Hamiltonian in eqn. (S21)

ȧ2(t) =
(
−iω2 −

κ2

2

)
a2 +

√
κext

2 αle
−iωlt (S22)

where κ2 = 2κext
2 + κ0

2, κext
2 is the loss rate at each cavity mirror and k0

2 is the loss rate inside the cavity. We assume
negligible internal losses in our system (k0

2 � 2κext
2 ). From eqn. (S22), we obtain the following steady state solution

for mode a2

〈a2〉 =
√
N2e

−iωlt =

∣∣∣∣∣
√
κext

2 αl
i∆2 + κ2/2

∣∣∣∣∣ e−iωlt (S23)

where N2 is the control laser driven intra-cavity photon number for mode a2, and ∆2 = ω2 − ωl (see Supplementary
Note ig. S5). Once we know the intra-cavity photon number for mode a 2, we use input-output formalism for a
symmetric Fabry-Pérot cavity to obtain the transmitted light field

a2,out =
√
κext

2 a2 (S24)

In the undepleted pump regime, we substitute 〈a2〉 from eqn. (S23) into the Hamiltonian of eqn. (S38) to derive the
following linearized Hamiltonian for the interaction between the optical mode a1 and the phonon mode bm

H = ~ω1a
†
1a1 + ~Ωmb

†
mbm − ~gm0

√
N2(a1bme

iωlt + a†1b
†
me
−iωlt) + i~

√
κext

1 αp(a
†
1e
−iωpt − a1e

iωpt) (S25)

From this Hamiltonian, by rotating in the frame of H0 = ~(ωl − ωp)b†mbm + ~ωpa†1a1 (i.e. a1(t) → a1(t)e−iωpt and

bm(t)→ bm(t)e−i(ωl−ωp)t), we obtain an effective Hamiltonian

Heff = ~δb†mbm − ~(δ −∆1)a†1a1 − ~gm(a1bm + a†1b
†
m) + i~

√
κext

1 αp(a
†
1 − a1) (S26)

where δ = Ωm−Ω = Ωm−ωl+ωp, and ∆1 = Ωm+ω1−ωl, and the cavity field-enhanced coupling rate gm = gm0
√
N2.

The Heisenberg equations of motions derived from this Hamiltonian

ȧ1(t) =
(
i(δ −∆1)− κ1

2

)
a1 + igmb

†
m +

√
κext

1 αp (S27)

ḃm(t) =

(
−iδ − Γm

2

)
bm + igma

†
1 (S28)

f



can be used to derive steady state values for the phonon and photon numbers

bm =
igm(

iδ + Γm

2

)a†1 (S29)

a1 =
−
√
κext

1 αp

i(δ −∆1)− κ1

2 +
g2m

−iδ+Γm/2

(S30)

As before, we can use the input-output formalism to obtain the transmitted probe light given by

a1,out =
√
κext

1 a1 = − κext
1 αp

i(δ −∆1)− κ1

2 +
g2m

−iδ+Γm/2

(S31)

In experiments, we use heterodyne detection of the transmitted probe light to measure the intra-cavity photon number.
The power spectrum of this heterodyne signal at the detector is given by

Pd(δ) ∝ 〈a†1,outa1,out〉 =

∣∣∣∣∣∣ κext
1

i(δ −∆1)− κ1

2 +
g2m

−iδ+Γm/2

∣∣∣∣∣∣
2

(S32)

If we assume that the frequency difference between the optical modes is exactly equal to the Brillouin frequency
(ω2−ω1 = Ωm) and the control laser is directly on resonance with the optical cavity mode a2 (∆2 = ∆1 = 0), we can
use eqn. (S30) to derive a simple expression for the intra-cavity field

a1 =
−
√
κext

1 αp

iδ − κ1

2 +
g2m

−iδ+Γm/2

(S33)

Since Γm � κ1 in our experiments, we get the following spectrum for the intra-cavity Stokes (a1) near the phonon
resonance (i.e., Ω ≈ Ωm)

a1(δ) '
2(iδ − Γm/2)

√
kext

1 /κ1αp

iδ − Γm

2 (1− C)

a1(Ω) =
2(i(Ωm − Ω)− Γm/2)

√
kext

1 /κ1αp

i(Ωm − Ω)− Γeff

2

(S34)

where C = 4N2|gm0 |2/(κ1Γm) is the cooperativity, and Γeff = Γm(1− C) is effective acoustic linewidth.
Without optomechanical coupling (i.e. gm = 0), we see that the peak intra-cavity field is given by

a′1(Ωm) = 2

√
κext

1

κ1
αp (S35)

However, with optomechanical coupling the intra-cavity field on resonance is given by

a1(Ωm) = 2

√
κext

1

κ1(1− C)
αp (S36)

Therefore, the relative peak height of the OMIA spectrum∣∣∣∣a1(Ωm)

a′1(Ωm)

∣∣∣∣2 =
1

(1− C)2
(S37)

can be used to directly measure the value of cooperativity (C) in our optomechanical system.

Section S4. Optomechanically induced transparency )

In this section, we follow the approach outlined in Ref. [44] to derive the intra-cavity optical spectrum during
OMIT measurements. The Hamiltonian of our optomechanical system that accounts for the external drive fields (i.e.,

OMIT(
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Fig. S6.OMIA measurement. a, The relative peak height of the OMIA signal increases non-linearly with the input control
laser power. This increase matches well with the theoretically predicted 1/(1−C)2 dependency b, We use the measured relative
peak height of the OMIA signal to calculate cooperativity C as a function of input control laser power. We use linear fit along
with the values of optical and acoustic dissipation rates in Table S1 and N2 obtained by measuring Pin to determine the single
photon coupling rate gmo /2π ' 18 Hz.

the control laser and the probe laser) is given by

H = ~ω1a
†
1â1 + ~ω2a

†
2a2 + ~Ωmb

†
mbm − ~gm0 (a†2a1bm + b†ma

†
1a2)

+ i~
√
κext

1 αl(a
†
1e
−iωlt − a1e

iωlt) + i~
√
κext

2 αp(a
†
2e
−iωpt − a2e

iωpt) (S38)

Note that we normalize the incident optical power launched into the cavity such that Pl = ~ωl 〈α†lαl〉 . We assume
a strong control laser and a weak probe; within the undepleted pump approximation, the dynamics of the mode at
frequency ω1 is not influenced by the optomechanical coupling and it can be described by the following equation of
motion derived from the Hamiltonian in eqn. (S38)

ȧ1(t) =
(
−iω1 −

κ1

2

)
a1 +

√
κext

1 αle
−iωlt (S39)

where κ1 = 2κext
1 + κ0

1, κext
1 is the loss rate at each cavity mirror and k0

1 is the loss rate inside the cavity. From eqn.
(S39), we obtain the following steady state solution for mode a1

〈a1〉 =
√
N1e

−iωlt =
∣∣∣ √κext

1 αl
i∆1 + κ1/2

∣∣∣e−iωlt (S40)

where N1 is the control laser driven intra-cavity photon number for mode a1, and ∆1 = ω1 − ωl. (see fig. S5). Once
we know the intra-cavity photon number for mode a1, we can use input-output formalism for a symmetric Fabry-Pérot
cavity, assuming laser fields incident only on one of the mirrors, to obtain the transmitted light field

a1,out =
√
κext

1 a1 (S41)

In the undepleted pump regime, we substitute 〈a1〉 in eqn. (S38) to derive the following linearized Hamiltonian for
the interaction between the optical mode a2 and the phonon mode bm

H = ~ω2a
†
2a2 + ~Ωmb

†
mbm − ~gm0

√
N1(a†2bme

−iωlt + b†ma2e
iωlt) + i~

√
κext

2 αp(a
†
2e
−iωpt − a2e

iωpt) (S42)

From this Hamiltonian, by rotating in the frame of H0 = ~(ωp − ωl)b†mbm + ~ωpa†2a2 (i.e. a2(t) → a2(t)e−iωpt and

bm(t)→ bm(t)e−i(ωl−ωp)t), we obtain an effective Hamiltonian

Heff = −~δb†mbm − ~(δ + ∆2)a†2a2 − ~gm(a†2bm + b†ma2) + i~
√
κext

2 αp(a
†
2 − a2) (S43)

where δ = Ω−Ωm = ωp−ωl−Ωa, and ∆2 = Ωa +ωl−ω2, and the cavity field-enhanced coupling rate gm = gm0
√
N1.

The Heisenberg equations of motions derived from this Hamiltonian, given by

ȧ2(t) =
(
i(δ + ∆2)− κ2

2

)
a2 + igmbm +

√
κext

2 αp (S44)

ḃm(t) =

(
iδ − Γm

2

)
b+ igma2 (S45)



can be used to derive steady state values for the phonon and photon numbers

bm =
−igm(
iδ − Γm

2

)a2 (S46)

a2 =
−
√
κext

2 αp

i(δ + ∆2)− κ2

2 +
g2m

iδ−Γm/2

(S47)

As before, we can use the input-output formalism to obtain the transmitted probe light given by

a2,out =
√
κext

2 a2 = − κext
2 αp

i(δ + ∆2)− κ2

2 +
g2m

iδ−Γm/2

(S48)

In experiments, we use heterodyne detection of the transmitted probe light to measure the intra-cavity photon number.
The power spectrum of this heterodyne signal at the detector is given by

Pd(δ) ∝ 〈a†2,outa2,out〉 =

∣∣∣∣∣∣ κext
2

i(δ + ∆2)− κ2

2 +
g2m

iδ−Γm/2

∣∣∣∣∣∣
2

(S49)

If we assume that the frequency difference between the optical modes is exactly equal to the Brillouin frequency
(ω2 − ω1 = Ωm) and the control laser is directly on resonance with the optical cavity mode a1 (∆2 = 0), we can use
eqn. (S47) to derive a simple expression for the intra-cavity field

a2 =
−
√
κext

2 αp

iδ − κ2

2 +
g2m

iδ−Γm/2

(S50)

Since Γm � κ2 in our experiments, we get the following spectrum for the intra-cavity anti-Stokes (a2) near the phonon
resonance (i.e., Ω ≈ Ωm)

a2(δ) '
2(iδ − Γm/2)

√
kext

2 /κ2αp

iδ − Γm

2 (1 + C)

a2(Ω) =
2(i(Ω− Ωm)− Γm/2)

√
kext

2 /κ2αp

i(Ω− Ωm)− Γeff

2

(S51)

where C = 4|gm0 |2N1/(κ2Γm) is the multi-photon cooperativity, and Γeff = Γm(1 + C) is effective phonon linewidth.
Without optomechanical coupling (i.e. gm = 0), we see that the peak intra-cavity field is given by

a′2(Ωm) = 2

√
κext

2

κ2
αp (S52)

However, with optomechanical coupling the intra-cavity field on resonance is given by

a2(Ωm) = 2

√
κext

2

κ2(1 + C)
αp (S53)

Therefore, the relative dip in the OMIT spectrum which is given by∣∣∣∣a2(Ωm)

a′2(Ωm)

∣∣∣∣2 =
1

(1 + C)2
(S54)

can be used to directly measure the value of multi-photon cooperativity (C) in our optomechanical system.

Section S5. Acoustic diffraction loss

In this section, we first estimate the diffraction losses for our flat-flat resonator assuming the ideal case of no tilt
misalignment between the optical cavity axis and the crystal axis. We use the approach outlined in Ref. [4], to



determine diffraction losses in our system. The acoustic modes of our cylindrical resonator (see fig. S7 a) are given
by

um,k(x) = βm,k cos

(
mπz

Lac

)
J0

(
2j0,kr

dc

)
(S55)

where J0 is the zeroth order Bessel function of the first kind, j0,k is the kth root of J0, Lac is the thickness of the
crystalline resonator and dc is the diameter of the quartz crystal, and βm,k is the normalization constant so that the
total energy in each mode is equal to ~ωm,k. The frequency of each mode depends on the longitudinal mode number
m and the transverse mode number k in the following way

ωm,k =

√(
mπ

Lac

)2

v2
l +

(
2j0,k
dc

)2

v2
t (S56)

where vl is the longitudinal sound velocity and vt is the effective transverse sound velocity. The acoustic field in our
system is optically driven through electrostrictive force, which is proportional to the square of the electric field. The
optical fields for the modes of our interest are Gaussian fields with transverse area that is essentially unchanging inside
the crystal. Therefore, force profile due to optical driving is also Gaussian. To calculate diffraction of the phonons
that start at some initial profile u0(x, t = 0) but evolve to u(x, t) after some time t, we use the eigenmode expansion
as

u(x, t) =
∑
m′,k′

cm′,k′e
−iωm′,k′ tum′,k′(x) (S57)

where the constant cm′,k′s are determined from the initial displacement profile due to the electrostrictive driving given
by

u0(x, t = 0) = U0cos

(
mπz

Lac

)
e−2r2/w2

opt (S58)

where wopt is the waist of the optical Gaussian beam that drives the phonon modes. To calculate diffraction losses
we calculate the overlap of the phonon field at time t with the original state u0(x, t = 0). In particular we look at

|η(t)|2 = | 〈u(x, t)|u(x, t = 0)〉 |2 (S59)

=

∣∣∣∣∣∑
k′

|cm,k′ |2eiωm,k′ t

∣∣∣∣∣
2

(S60)

We obtain the acoustic energy lost from diffraction by plotting the normalized value of |η(t)|2 (i.e.|η(t)|2/|η(t = 0)|2)
as a function of time (see fig. S7 b). Fitting an exponential to this plot, we get an order of magnitude estimate for
the decay time ∼ 17 µs, which corresponds to phonon linewidth Γm/2π = 9 kHz.
In experiments, however, we measure a linewidth (Γm/2π = 86 kHz) that is much larger than the diffraction loss
limit of 9 kHz. Note that for the diffraction loss calculation, we assumed that there is no tilt misalignment between
the optical cavity axis and the crystal axis. Phonons encounter additional diffractive losses in the planar acoustic
geometry if the crystal axis is tilted with respect to the optical cavity axis (see fig. S7 c ). This is analogous to the
well known losses introduced by tilting a Fabry-Pérot etalon inside an optical cavity (see Ref. [45]).
The measured finesse of our acoustic cavity was about 7. We calculate that even a small tilt angle of 0.07 degree
is enough to result in lateral offset for the Gaussian acoustic beam that is twice the initial acoustic waist after 7
round-trips. Since the crystal is sitting on the Invar holder, whose surfaces are not perfectly flat, it is entirely possible
in our experiment to have this level of misalignment. By designing a stable plano-convex acoustic cavity it is possible
to mitigate the effects of diffraction and make the acoustic loss less sensitive to tilt misalignment.
Acoustic Q-factor of 4 .2× 107 ( Γm ≈ 2π × 300 Hz) has already been demonstrated for 12.7 GHz phonons confined
within such plano-convex quartz resonators at cryogenic temperatures (∼ 10 K) (see Ref. [24]). It is intriguing
to consider using such highly coherent phonons to access, control, and study defect centers (or Two Level Systems
(TLS)) in a variety of materials (see Ref. [36-37]). Using such high-Q resonators fabricated on-chip (see Ref. [25]), it is
possible to create phonon modes with mode volumes of ∼ 1.6×10−13 m3 having zero-point strain fields S = q×xzpf ≈
1.5× 10−11, where q is the acoustic wavevector and xzpf is the zero-point amplitude of the acoustic displacement field
(see Eq. S10). Assuming a deformation potential of 1 eV per unit strain for a single TLS, we estimate zero-point strain
induced frequency shift of TLS energy level of about 4 kHz. Note than this zero-point coupling rate for phonon-TLS
interaction is more than 10 times larger than acoustic cavity linewidth. Therefore, utilizing defect centers that have
very long lifetimes at cryogenic temperatures (see Ref. [46]), it may be possible to enter strong coupling regime for
phonon-TLS interaction. Such regime would allow phononic access to defect centers for scientific studies of phononic
decoherence mechanisms as well as for quantum acoustic technologies.
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Fig. S7.Acoustic diffraction loss. a, Our acoustic resonator has a cylindrical geometry, with L ac = 5.19 mm and dc = 12.7
mm. Gaussian acoustic beam diffracts upon propagation inside the crystalline medium resulting in loss of acoustic energy. b,
We obtain a diffraction loss limited lifetime of ∼ 17µs, which corresponds to a phonon linewidth of ∼ 9 kHz. For this calculation
of acoustic diffraction loss we used the following parameters: wopt = 61 µm, wac = 43 µm, vl = 6319 m/s, vt = 5112 m/s, and
Ωm/2π = 12.645 GHz. c, Even a small tilt angle (θ) of the crystal axis with respect to the acoustic axis can result in a large
spatial walk-off of the phonon beam resulting in diffractive losses.

Section S6. Thermal fluctuations and phonon lasing

In this section, we look at the power spectrum of the spontaneously scattered Stokes light due to thermal fluctuations
of our mechanical mode. We consider the case where the control laser in directly on resonance with the high-frequency
optical mode (ωl = ω2) and the frequency spacing between the two adjacent optical modes is equal to the Brillouin
frequency (ω2 − ω1 = Ωm).
For measurements of thermal fluctuations we turn off the probe laser (αp = 0). Starting with the Hamiltonian from
eqn. (S21) and setting αp = 0, we obtain

H = ~ω1a
†
1â1 + ~ω2a

†
2a2 + ~Ωmb

†
mbm − ~gm0 (a†2a1bm + b†ma

†
1a2)

+ i~
√
κext

2 αl(a
†
2e
−iω2t − a2e

iω2t) (S61)

As before, we assume a strong control laser and weak optomechanical coupling to derive the following steady state
amplitude for mode a2

〈a2〉 =
√
N2e

−iωlt = 2

√
kext

2

κ2
αle
−iω2t (S62)

where N2 is the intra-cavity photon number in mode a2. We substitute 〈a2〉 into the Hamiltonian in eqn. (S61) and
by rotating in the frame of the control laser (i.e. a2(t)→ a2(t)e−iω2t), we obtain the following linearized Hamiltonian

Heff = −~Ωma
†
1a1 + ~Ωmb

†
mbm − ~gm(a1bm + b†ma

†
1) (S63)

where gm =
√
N2g

m
0 is the cavity-enhanced optomechanical coupling rate. The Heisenberg-Langevin equations of

motion derived from this effective Hamiltonian are

ȧ1 =
(
iΩm −

κ1

2

)
a1 + igmb

†
m (S64)

ḃm =

(
−iΩm −

Γm
2

)
bm + igma

†
1 +

√
Γmb̃in (S65)

where b̃in(t) is the input thermal fluctuation that drives the phonon mode. We assume a Markovian noise process (see
Ref. [15]) such that

〈b̃†in(t)b̃in(t′)〉 = nthδ(t− t′) (S66)

〈b̃in(t)b̃†in(t′)〉 = (nth + 1)δ(t− t′) (S67)



〈. . .〉 represents an ensemble average, and nth = (e~Ωm/kBT − 1)−1 denotes the average number of thermal phonons
of angular frequency Ωm at temperature T . For instance, at a temperatures of 10 Kelvin, nth ' 16 for 12.645 GHz
phonon modes. In contrast, the optical fields have essentially zero thermal occupation even at room temperatures
since they are at much higher frequencies (∼ 200 THz). Therefore, we ignore thermal fluctuations of the optical field
in our calculations. Furthermore, we assume that the externally driven laser source is a pure coherent tone (no added
noise from the laser itself), which is a good approximation for our experiments.

We now use Fourier-transform (defined as f(ω) =
∫ +∞
−∞ dt f(t)eiωt) to solve eqns. (S64-S65) in frequency space,

which are given by

a1(ω) =
−igm

i(ω + Ωm)− κ1/2
b†m(ω) (S68)

bm(ω) =
i
√

Γm
(ω − Ωm + iΓm/2 + Σ(ω))

b̃in(ω) (S69)

where we define

Σ(ω) = δΩm(ω)− iΓopt(ω)

2
=

ig2
m

i(ω − Ωm)− κ1/2
(S70)

Here, δΩm(ω) = Re{Σ(ω)} gives us the frequency shift of the phonon mode and Γopt(ω) = −2Im{Σ(ω)} gives us the
optomechanical amplification rate. While Σ(ω) is frequency dependent, for weak coupling ( gm � κ1), we can just
evaluate δΩm(ω) and Γopt(ω) at ω = Ωm (see Ref. [15]). This calculation gives δΩm = 0 and Γopt = 4g2

m/κ1. So, we
can re-write eqn. (S69) as

bm(ω) =
i
√

Γm
(ω − Ωm + iΓ′m/2)

b̃in(ω) (S71)

where Γ′m = Γm − Γopt = Γm − 4g2
m/κ1

We can use b(ω) in eqn. (S71) along with the noise correlations in eqns.(S66)-(S67) to calculate the power spectrum
of laser driven mechanical mode, Sbb(ω), which is defined as

Sbb(ω) =

∫ +∞

−∞
〈b†(t)b(0)〉 eiωtdt (S72)

=
Γmnth

(ω + Ωm)2 + (Γ′m/2)2
(S73)

From this derivation we see that the power spectrum has a linewidth determined by the effective damping rate
Γ′m = Γm(1 − Γopt/Γm). Therefore, when the optomechanical amplification rate equals the cold cavity linewidth
(Γopt = Γm or C = Γopt/Γm = 1), a threshold condition is achieved, which leads to zero effective damping and
regenerative self-oscillation of the phonon mode (also called phonon lasing).
We can also calculate the intra-cavity power spectrum of the spontaneously scattered light due to thermal fluctua-
tions of the mechanical mode using eqns. (S68-S69). The power spectrum, Sa1a1(ω), is given by

Sa1a1(ω) =

∫ +∞

−∞
〈a†1(t)a1(0)〉 eiωtdt (S74)

=
g2
mΓm(nth + 1)

((ω − Ωm)2 + (κ1/2)2) ((ω − Ωm)2 + (Γ′m/2)2)
(S75)

From this expression we see that, using proper calibration of the heterodyne power spectrum of the spontaneously
scattered light and values of gm, Γm, κ1 determined independently from the coherent (OMIA) measurements, it is
possible to estimate the thermal phonon number in our system.

A. Slope efficiency

Once self-oscillating (i.e. above threshold) the total Stokes power as a function of input control power is given by
(see supplementary materials of Ref. [47])

Ps ≈
κpωsvp
2κsωpvs

(Pin − Pth) (S76)



50 100 150 200
0

10

20

30

40

O
ut

pu
t S

to
ke

s 
po

w
er

 (m
W

)

Input control power (mW)

slope e�ciency ~ 62%

Fig. S8.Slope efficiency of the phonon laser. The backscattered optical power is used to determine total output Stokes
power as a function of the input control laser power. This measurement reveals a slope efficiency of ≈ 62%, which is consistent
with the theoretically estimated value of 57%.

where κp(κs) is the optical cavity linewidth, vp(vs) is the group velocity of optical mode at frequency ωp(ωs) respec-
tively, and Pth is the threshold input power for self-oscillation. Using the parameters from table S1 we calculate the
slope efficiency Ps/(Pin−Pth) ≈ 57%. This agrees well with the experimentally measured value of 62 % (see fig. S8).

B. Phonon laser linewidth

Next we estimate the quantum-back-action limited linewidth and phase noise of our phonon laser. At C = 1.4, from
the measurements of backreflected optical power, we estimate total scattered output Stokes power of Ps = 42 mW
(see fig. S8). Knowing the scattering rate of Stokes light per phonon, γ OM = 4G2/κ, we can calculate the steady
state coherent phonon number as

nc =
Ps

~ωγOM
= 4.2× 1011 (S77)

This large coherent phonon number should produce dramatic Schawlow-Townes narrowed linewidth (see Ref. [48])
given by

∆Ω =
Γm
2nc

(nth + 1) = 2π × 1.7 µHz (S78)

where nth = 16 at 10 Kelvin temperatures. Such ultra-narrow linewidth would result in a phase noise of -145
dBc/Hz at 10 KHz offset for a 12.6 GHz opto-mechanical oscillator. Dramatic improvement in the quantum-back-
action limited phase noise performance is possible within this quartz optomechanical system by using a plano-convex
acoustic resonator having an intrinsic phonon dissipation rate Γm = 2π × 300 Hz (see Ref. [24]). For similar control
input laser powers of 204 mW, we obtain steady state phonon population of 2×1012. This would result in a Schawlow-
Townes narrowed linewidth of ∆Ω = 2π × 0.5 nHz at 4 Kelvin temperature. Such highly coherent oscillator would
have a phase noise of -181 dBc/Hz at 10 kHz offset for a 12.7 GHz optomechanical oscillator.

S S7. R

In this section, we calculate the scattering rate difference between the Stokes and anti-Stokes processes for our multi-
mode optomechanical system. In a single-mode optomechanical system, a control laser is typically detuned from an
optical resonance by Ωm to achieve a large difference in the Stokes and the anti-Stokes scattering rate (provided that
Ωm � κ). However, the coherent driving field is directly on resonance with an optical mode in our optomechanical
system. Nevertheless, we can engineer large asymmetry in the scattering rates for the Stokes and the anti-Stokes
processes by engineering the optical density of states.
To explore this we consider a Hamiltonian that describes three optical modes interacting with a single phonon mode

H =
∑

j=0,1,2

~ωja†jaj + ~Ωmb
†
mbm − ~gm0,−(a†1a0bm + b†ma

†
0a1)− ~gm0,+(a†2a1bm + b†ma

†
1a2) +Hdrive (S79)

ection elative cattering rates



Here, aj (bm) is the annihilation operator for the optical (phonon) mode at frequency ωj (Ωm), gm0,∓ is the single
photon coupling rate for the Stokes ( anti-Stokes) scattering processes, and Hdrive is the Hamiltonian for the external
drive field. Since all the fundamental longitudinal optical modes considered here have essentially the same mode
profiles g0,+ = g0,− = gm0 is an excellent approximation.
For our calculation, we assume that the coherent laser field is driving the optical mode at frequency ω1 directly on
resonance (ωl = ω1). We also assume that only two optical modes (a1 and a2) are frequency separated by the phonon
frequency (ω2 − ω1 = Ωm). Then, ω1 − ω0 = Ωm + χ, where χ characterizes the asymmetry in the optical FSR. We
also assume that the decay rate of the optical modes is due to the external coupling loss due to finite reflectivity of
the two mirrors (κj = 2κext). For weak optomechanical coupling, we assume undepleted pump and a large coherent

field amplitude 〈a1〉 =
√
N1e

−iω1t, where
√
N1 = 2(

√
κext/κ)αl and Pin = ~ω1 〈α†lαl〉 .

Working in the rotating frame of H0 = ~ω1a
†
1a1 (i.e. a1(t) → a1(t)e−iω1t), we obtain the following linearized

Hamiltonian from eqn. (S79)

Heff = −~(Ωm + χ)a†0a0 + ~Ωma
†
2a2 − ~gm(a0bm + b†ma

†
0)− ~gm(a†2bm + b†ma2) (S80)

where gm = gm0
√
N1. We use this Hamiltonian to derive the following Heisenberg-Langevin equations of motion for

the dynamics of the anti-Stokes photon, Stokes photon and the phonon

ḃm =

(
−iΩm −

Γm
2

)
bm(t) + igma

†
0 + igma2 +

√
Γmb̃in (S81)

ȧ0 =
(
i(Ωm + χ)− κ0

2

)
a0 + igmb

†
m (S82)

ȧ2 =
(
−iΩm −

κ2

2

)
a2(t) + igmbm (S83)

Using these equations we obtain the following equation for the phonon mode amplitude in frequency space:

bm(ω) =
i
√

Γmb̃in(ω)

(ω − Ωm) + iΓm/2 + Σ−(ω) + Σ+(ω)
(S84)

where the modification to the mechanical susceptibility due to optomechanical coupling is given by

Σ−(ω) = δΩ−m(ω) + i
Γ−(ω)

2
=

ig2
m

i(ω − Ωm − χ)− κ0/2
(S85)

Σ+(ω) = δΩ+
m(ω) + i

Γ+(ω)

2
=

−ig2
m

i(ω − Ωm)− κ0/2
(S86)

As discussed in Section VI, the real and imaginary parts of Σ±(ω) determine mechanical frequency shift (δΩ±m(ω))
and the optomechanical damping/amplification rate (Γ±(ω)). For weak coupling gm � κ/2 and Γm � κ, we can
simply evaluate Σ±(ω) at the mechanical frequency ω = Ωm to get

δΩ−m = − g2
mχ

χ2 + (κ0/2)2
(S87)

Γ− = − g2
mκ0

χ2 + (κ0/2)2
(S88)

δΩ−m = 0, (S89)

Γ+ =
4g2
m

κ2
(S90)

If we assume κ0 ' κ2 = κ and χ� κ, we obtain

Γ− '= −4
g2
mκ

χ2
= −Γ+

(
κ

2χ

)2

(S91)

Therefore, for the optomechanical cooling process that we considered here, the Stokes process (phonon mode heating)
is smaller than the anti-Stokes process (phonon mode cooling) by a factor of (κ/2χ)2.
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Fig. S9. Phonon counting in a multiresonant optomechanical system a, A strong control laser resonantly drives a lower
frequency optical mode at frequency ωj for phonon couting measurements. b, The transmitted light from this optomechanical
system consists of both the signal (light scattered due to phonons) as well as the strong control laser, which must be filtered
out before photon counting measurements.

S S8. Phonon ounting ensitivity

In this section, we derive phonon counting sensitivity in the weak coupling regime (gm � κ) for our multi-mode
optomechanical system and compare it with the phonon counting sensitivity for a single-mode optomechanical system
presented in Ref. [17].
We use a strong coherent drive field that is directly resonant on the lower frequency optical mode ωj while the
probe laser (αp = 0) is turned off (see ig. S9a). We assume that ω j+1 − ωj = Ωm. We use the following linearized
Hamiltonian

Heff = ~ωj+1a
†
j+1aj+1 + ~Ωmb

†
mbm − ~G(a†j+1bme

−iωlt + b†maj+1e
iωlt)

(S92)

to obtain Heisenberg equations of motion and use the input-output relations, to get the following relation for the
high-frequency optical field exiting our optomechanical system

aout(t) =
√
κeaj+1(t) (S93)

'
2i
√
κeGbm(t)

κ
(S94)

= i

√
κe
κ

√
γOMbm(t) (S95)

where G =
√
ncg

m
0 is the cavity enhanced coupling rate, κe is the external loss rate at each cavity mirror, κ = 2κe is

the total decay rate for each optical mode, and the optomechanical damping rate γOM = 4G2/κ. Since, 〈a†outaout〉 =
(κe/κ)γOM 〈b†mbm〉, the rate of emission photons at frequency ωj+1 per phonon is (κe/κ)γOM. These photons are
detected with an overall system detection efficiency of η (this includes losses before the photon gets to the single
photon detector as well as the less than unity detection efficiency of the single photon detector). The count rate per
phonon on the detector due to our signal is Γsig = η(κe/κ)γOM.
In contrast to a single-mode optomechanical system, light transmitted through our multi-mode optomechanical
system also has a large flux of control photons because the control laser is directly on resonance with the optical mode
at ωj . Assuming critical coupling and no internal losses, photon flux for the transmitted control laser in terms of the
intra-cavity photon number is given by

Ṅc =
Pin

~ω
=
ncκ

2

4κe
(S96)

The transmitted light is passed through an additional optical filter to remove unwanted control laser (see ig. S9b)
before photon detection. Let’s assume an power attenuation of A. Then the count rate on the detector due to the
wanted control laser is Γcontrol = ηAṄc.
So, the total count rate on the detector is given by

Γtot = Γsig 〈n〉+ Γcontrol + Γdark (S97)

where 〈n〉 is the average phonon number and Γdark is the dark count rate of the signal photon detector.
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To characterize the sensitivity of phonon counting we calculate the noise-equivalent phonon number for our multi-
mode optomechanical system

nMM
NEP = nMM

control + nMM
dark (S98)

=
Γcontrol + Γdark

Γsig
(S99)

= A

(
κ2

4κeg0

)2

+
Γdarkκ

2

4ηκencg0
2

(S100)

For single phonon level sensitivity, we want nNEP < 1. In comparison, the noise-equivalent phonon number for a
single-mode optomechanical system is given by (see Ref. [17])

nSM
NEP = nSM

control + nSM
dark (S101)

= A

(
κΩm
2κeg0

)2

+
Γdarkκ

2

4ηκencg2
0

(S102)

For same values of nc, the expression for ndark is the same for both multi-mode and single-mode optomechanical
system. At experimentally achievable γOM > 1 MHz and dark count rates of Γdark = 10 Hz, ndark � 1.
Assuming symmetric Fabry-Pèrot type optomechanical system (κ = 2κe), we find from eqn. (S98) and (S101) that

nSM
control = A

(
Ωm
g0

)2

(S103)

nMM
control = A

(
κ

2g0

)2

(S104)

From this we see that nMM
control is suppressed by the square of the optical finesse. However, nSM

control in a single-mode
optomechanical system is independent of the optical finesse. Instead nSM

control increases as the square of the frequency
of the phonon mode.
Note that the calculation we performed here is a conservative estimate because sensitivity can be enhanced by
performing photon counting using the back-reflected light. When the control laser is critically coupled to our op-
tomechanical cavity, back-reflected control laser power, in principle, is zero. In practice, we expect around 20 dB
suppression of the unwanted counts from the control laser when using the back-reflection port.
Using a higher finesse optical cavity (F ≈ 3000) with κ/2π ' 4 MHz and g0/2π ' 20 Hz, we expect nMM

control < 1 using
80 dB of filtering of the control laser in our multi-mode optomechanical system. In this system we get γOM = 2π × 2
MHz for Pin ≈ 11 mW. Assuming η = 50%, we get Γsig = 2π × 0.5 MHz.
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